Ligand-functionalized Microbeads for Preferential Binding of Methylated and Unmethylated DNA

Kayla Charles, Biomedical Engineering
Mentor: Subhadeep Dutta and Prof. Kaushal Rege
Arizona State University

Research Motivation

Plasmid DNA (pDNA) is one of the main building blocks for vaccines and essential therapeutics for non-viral gene therapy applications. In diseases like Cancer and Alzheimer’s DNA methylation plays a vital role which dictates changing the healthy settings of gene expression to a diseased pattern. Plasmids are circular double stranded DNA molecules that are different from cells' chromosomal DNA, for example they can replicate independently. To effectively use pDNA in these therapeutic applications it is necessary to efficiently isolate and purify the pDNA, which can be found in a variety of bacterial cells. Hence new approaches to enrich methylated DNA from biological samples in a rapid and cost-effective way can advance the transformative treatment and detection techniques of many diseases. Ongoing research from Dr. Rege’s lab has discovered a polymer microbead (Amikabead) platform, which has shown high binding affinity to plasmid DNA molecules and demonstrates its ability for bio-manufacturing applications to be used in future biotechnology and therapeutic research. With this research, a chemically diverse lipid-modified Amikabead library will be synthesized to evaluate methylated and unmethylated plasmid DNA binding.

Methods

- Aminyl chloride (C2)
- Butyl chloride (C4)
- Hexyl chloride (C6)
- Octyl chloride (C8)
- Decyl chloride (C10)
- Lauryl chloride (C12)
- Myristyl chloride (C14)
- Palmitoyl chloride (C16)
- 2-ethyl butyl chloride (ethylbutyl)
- Hydroxymethyl chloride (hydroxyacetonyl)

Experimental Findings

- **Characterization of Parental Amikabead by Ninhydrin Assay:**

 ![Ninhydrin Calibration (Glycine)](image)

 ![Comparison of Ninhydrin assay response between Lipid beads](image)

- **Characterization of Lipid-modified beads by Ninhydrin Assay:**

 ![Ninhydrin assay response of Lipid beads vs Parental bead](image)

Schematics

- Parental Amikabead synthesis: Emulsion polymerization between Amikacin hydrate and PEDE. Characterization with Ninhydrin assay.
- Lipid modification: Different chain lengths of lipids (C2, C4, C6, C8, C12) have been conjugated on the parental Amikabead by using aqueous phase Comu-catalyzed reaction.

Obstacles

- A significant obstacle that was encountered during the semester was time. There was a significant amount of research to be done and different types of experiments to learn and then execute. Because of this it was difficult to be able to make progress in two months.

Conclusion

- Parental Amikabeads were synthesized and characterized successfully with Ninhydrin assay.
- Different chain lengths of lipids were successfully conjugated on the Parental Amikabeads.
- Lipid beads showed a significant drop in Ninhydrin assay response confirming a successful conjugation.

Acknowledgements

I would like to thank Rege lab members for support and motivation and ASU for providing funding through FURI.

References