Near Field Radiation Heat Transfer Measurement Kareem Ayoub, Aerospace Engineering Mentor: Liping Wang, Associate Professor School for Engineering of Matter, Transport & Energy ## Abstract The following research project involves preparing a method to measure near field radiative (NFR) heat transfer between two surfaces, and then extracting real data measurements of such heat transfer. This will be done through a system in which the deflection of a silica sphere tipped bi-material cantilever will be tracked as it transfers heat to a plate at a distance less than 10 μ m from it. ## Background Based on the thermodynamic control volume in figure 1, the steady state energy balance tells us that $Q_{abs} = Q_{conduct} + Q_{NFR}$ and without a plate within 10 µm for near field thermal radiation to activate, the energy balance becomes: $Q_{abs} = Q_{conduct}$ where Q_{abs} is the heat absorbed from a laser, and $Q_{conduct}$ is the heat conducted through the AFM probe. It is this project's interest to reduce the heat conducted within the probe to maximize the heat radiated quantified as Q_{NFR} . Alternating the AFM probe for one with a less thermally conductive base material will allow for greater quantities of heat to thermally radiate. The thermal conductance of a probe can be characterized by its 'G' value where $Q_{conduct} =$ $G(T_{tip}-T_{\infty})$. T_{tip} is the temperature of the probe tip where the laser is concentrated and T_{∞} is the ambient temperature. The lower the thermal conductance characterized as G, the higher the near field heat radiation will be. Previously, a silicon-based probe has successfully been used and now a pyrexbased (borosilicate glass) probe is of interest. Its predicted that a pyrex-based probe will have a smaller G value thus resulting in a higher amount of thermal radiation. These simulations will help to clarify whether the difference is significant. ## Method Steady state thermal simulations were performed on Ansys. The probe geometry and a small chunk of the base were re-created with relative accuracy in Design modeler. A 50 μm dimeter silica sphere is attached to the 420 nm thick Si3Ni4 side of the probe to better simulate the experimental setup and to compare G values with other literature. The laser heat input is simulated as a heat flux through a 15 μm diameter circle at the tip of the 70nm thick gold side of the probe. The base chunk is represented as a 200 μm half circle extruded 10 μm . The back-edge of the base will have a temperature boundary condition of 24.5 o C. By alternating the material of the base, a comparison can be drawn between Pyrex and silicon. A study is performed varying the thermal conductivity of gold and varying the heat input from the laser. Figure 1: Heat Transfer Model of Probe and Plate within range of NFR G vs Heat Input (kgold = 100 W/m-K) # 50.685 Max 47.776 44.866 41.957 39.047 36.138 33.228 30.319 27.409 24.5 Min Bi-material Triangle Cantilever Silica Sphere Figure 4: Example Thermal Model from Ansys with Temperature Contours ### Conclusion Sheng S. and Gang C. from MIT conducted his experiment using a silicon-based probe. He had a resulting G value of 4.52 $\mu\text{W/K}$. From the simulations, the thermal conductivity of Gold in his case was about 100 W/m-K, a significant reduction from the more typical bulk value of around 300 W/m-K. The graphs show that the G value with Pyrex-based probe is lower than the silicon-based. As expected, the G value does not vary with the laser heat input as seen in figure 3. The thermal conductances of the silicon and Pyrex probes with a gold thermal conductivity of 100 W/m-K are 4.64 and 4.00 $\mu\text{W/K}$ which is a 14.8 % difference. # Varying Thermal Conducitivy of Gold w/ Qabs = 210 uW Figure 2: G Value of Pyrex and Silicon against k_{Au} Figure 3: G Value of Pyrex and Silicon against Q_{abs} Heat Input (μW) 100.00 150.00 200.00 250.00 300.00 350.00 ## References - [1] Kondakindi, Ramteja Reddy. 2019. AFM Bimaterial Cantilever Based Near-field Radiation Heat Transfer Measurement - [2] Sheng S, Gang C. 2008. Near-field radiative heat transfer between sphere and a substrate