Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(N-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.