# Development of A Photo-Responsive Moisture-Absorbent Composite for Atmospheric Water Extraction Xingbang Zhao, Materials Science and Engineering

## Dr. Paul Westerhoff, Regents Professor, School of Sustainable Engineering and the Built Environment

### Abstract

Poly(N-isopropylacrylamide) was chosen as water reservoir, which is one of the component of the photo-responsive moisture-absorbent composite for Atmospheric Water Extraction technology. Demonstrated that the saturated water content of poly(*N*-isopropylacrylamide) hydrogel network reaches the 22 g/g at room temperature and effectively released approximately 18 g/g at 40 °C within 30 minutes by tuning synthesis compositions. Preliminary copolymerization synthesis of hygroscopic materials with PNIPAAm hydrogel were also tried.

#### Background

Atmospheric Water Extraction (AWE) technology can provide fresh water using thermoresponsive adsorbent composite to capture the gaseous water from the air and efficiently release it in liquid form [1]. Such materials holds promise but currently suffers from energy intensiveness. A photo-responsive hybrid gel consisting of a hygroscopic material to extract atmospheric water, a hydrophilic hydrogel as a water reservoir, and a light sensitive agent to realize photo-responsive for the Atmospheric water extraction technology will be developed.



Fig. 1 The atmospheric water capturing and releasing processes via moisture absorbent [1]. The process of moisture from the air will be release in liquid form through the condensation. The hydrophilic polymer-based hydrogel network works as a platform to store gaseous water.

### Materials and Methods

- The PNIPAAm hydrogel synthesis: N-isopropylacrylamide monomer, N,N,N',N'-Tetramethylethane-1,2-diamine(TEMED) as accelerator, N,N'-Methylenebisacrylamide (MBAA) as crosslinker and apersulfate (APS) as initiator.
- The water uptake tests were done by monitoring weight change of hydrogel as a function of time at room temperature and elevated temerpatures at 40 celsius degree in water bath.



Fig. 4 The water uptake of optimized PNIPAAm hydrogel at room temperature.

Mentors: Dr. Lenore Dai, Director of SEMTE School for Engineering of Matter, Transport and Energy

#### **Testing Results and Discussion**



Fig. 2 The water uptake of PNIPAAm hydrogel at room temperature



Optimized PNIPAAm hydrogel released 18 g water/g gel at 40 °C within 30 minutes.

accordingly.

