

Swette Center for Environmental Biotechnology

Enzyme-Induced Carbonate Precipitation (EICP) Using Fresh Urine and Calcium-Rich Zeolites

Lucas Crane, Hannah Ray, Nasser Hamdan, Treavor Boyer

Background

- Traditional cementation methods have high energy usage and fossil fuel produ
 - An alternative method is EICP, but the environmental impact is a concern:
 - Urea is synthetically created as an input to EICP
 - Ammonium is produced as an output from EICP
- Urine can be used as a novel source of urea for EICP
 - Urine currently accounts for a large majority of nitrogen, potassium, phosphorus, and other nutrients entering wastewater treatment plants
 - However, urine accounts for less than 1% of the volumetric flow; thus, repurposing these nutrients would be beneficial for operation of wastewater treatment plants
 - The use of urine for EICP has not been fully explored
 - Zeolites can be used to adsorb the ammonium byproduct
 - Zeolites have been proven as an adsorbent of ions within a multitude of solutions, but have not been fully explored for EICP
 - Calcium-rich zeolites may be more beneficial for EICP because they exchange calcium with ions in solution, promoting calcium carbonate formation

Urea Hydrolysis

•

\rightarrow Ammonium + CO_2 Urea urease

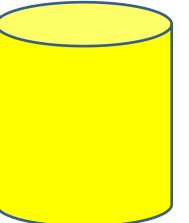
- Process that occurs naturally in urine and synthetically in EICP
 - Presence of urease enzyme catalyzes reaction
 - pH rises due to ammonium formation
 - Carbon dioxide forms into carbonic acid (H_2CO_3) , which dissoci into carbonate ion (CO_3^{2-})

Enzyme-Induced Carbonate Precipitation $Ca^{2+} + HCO_3^- \rightarrow CaCO_{3(s)} + H^+$

- Through addition of calcium chloride, calcium carbonate precipitates, which bonds together sand particles to create cement
 - Calcium exchanged from calcium-rich zeolites may also be a source of calcium ions
 - pH decrease due to released H^+ ion

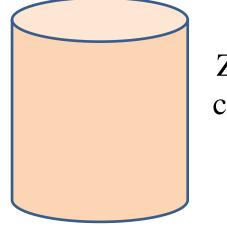
Objectives

- 1. Investigate efficacy of calcium-rich zeolites to adsorb ammonium ions.
- Investigate differences between calcium-rich and natural zeolites to produce calcium carbonate.
- Investigate efficacy of zeolites to adsorb ammonium within cement.
- Investigate how the orientation of zeolites affects ammonium adsorption.


Experimental Design

uction

Table 1. Synthetic Fresh Urine Composition


Chemical Species	Concentration (M)
Urea	0.250
NaCl	0.440
Na_2SO_4	0.015
KCl	0.050
$MgCl_2 \cdot 6H_2O$	0.005
NaH ₂ PO ₄	0.020
$CaCl_2 \cdot 2H_2O$	0.004

Preparation of three beaker solutions, combine until reaction to completion (24-36 hours):


Table 2. Zeolite Concentrations

Species	Concentration
Calcium-rich clinoptilolite	100, 300, 500 g/L
Calcium-rich chabazite	100, 300, 500 g/L
Natural clinoptilolite	100, 300, 500 g/L
Natural chabazite	100, 300, 500 g/L

Table 3. EICP Solution Composition

	<u>Futu</u>	Concentration
	$CaCl_2 \cdot 2H_2O$	0.200 M
ciates	Urease Enzyme	3.000 g/L
	Zeolite	See Table 2

Objectives 3 and 4: Sand Column Experiments

Preparation of urine, calcium chloride, and urease solutions; combine and pump through column filled with sand and zeolites.

- Finish work on Objectives 1 and 2
- Finalize procedure for Objectives 3 and 4
- Finish work on Objectives 3 and 4

Figure 1. Preparation of calcium-rich zeolites through 0.45-µm filter.

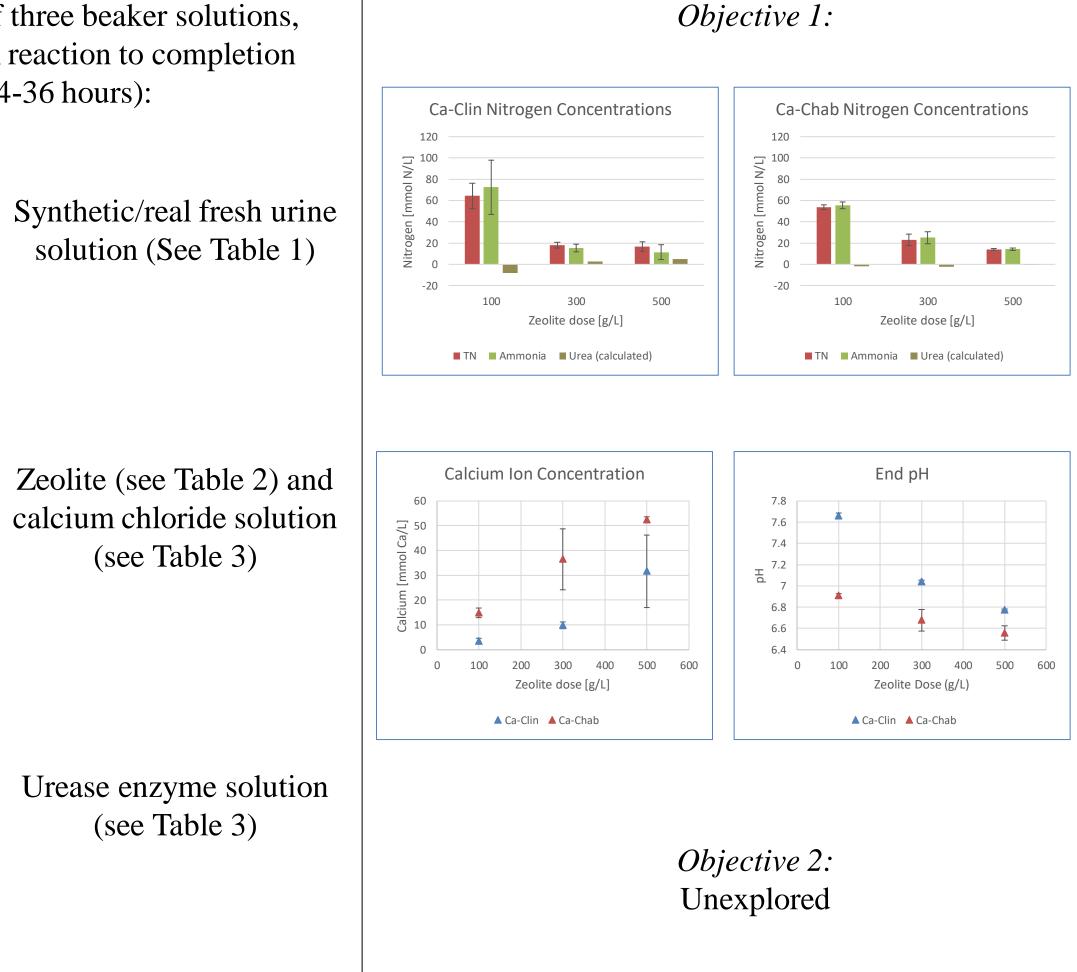


Figure 2. Prepared calcium-rich clinoptilolite zeolite.

Progress

Objectives 1 and 2: Beaker Experiments

Objectives 3 and 4: Unexplored

Future Work

• If time permits, conduct studies on the effects of proteins within urine on EICP

