Research Question

Will assistance from a **wearable ankle robot** using a variable impedance controller allow human users to move in an agile and stable way that requires less effort than commonly-used controllers?

Methods

In this study, **10** human subjects wore an ankle robot that provided assistance through a variable impedance controller.

Variable damping was calculated using velocity $(\dot{\theta})$ and acceleration $(\hat{\theta})$. User intent recognition was based on changes in kinetic energy, $\theta \theta$.

Variable stiffness

was used to ensure subjects moved in a straight path based on the subjects' intent of direction.

Variable Impedance Control of the Robotic Ankle Joint

James Arnold, Robotics and Autonomous Systems (Mechanical Engineering) Mentor: Hyunglae Lee, Assistant Professor

School for Engineering of Matter, Transport and Energy

Results

• The variable impedance controller was compared with a positively damped, zero stiffness controller. **A** Overshoot Statistical analysis demonstrated similar results for stability, an increase in agility, and a reduction in overall human effort for the variable impedance controller. **Representative Subject Results** Position (IE)

Conclusions

B Enclosing

• The variable impedance controller was shown to:

Maintain Stability

Improve Agility

Reduce Effort

By using information about the inherent human ankle impedance, a variable impedance controller was designed that is less conservative than commonly-use positive damping controllers.

Future Work

- Use machine learning (Bayesian Optimization) to tune the parameters in the variable impedance controller.
- Test the controller in different environments (e.g., a walking study) and for different joints (e.g., the shoulder).

Acknowledgements

Thank you to Dr. Hyunglae Lee for your mentorship. This project was funded by the MORE.

Ira A. Fulton Schools of Engineering **Arizona State University**