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Will assistance from a wearable ankle 
robot using a variable impedance
controller allow human users to move in 
an agile and stable way that requires less 
effort than commonly-used controllers?

Research Question

In this study, 10 
human subjects wore 
an ankle robot that 
provided assistance
through a variable 
impedance controller.

Methods

• The variable impedance controller 
was shown to:

Conclusions

• Use machine learning (Bayesian 
Optimization) to tune the parameters 
in the variable impedance controller.

• Test the controller in different
environments (e.g., a walking study) 
and for different joints (e.g., the 
shoulder).
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Results

Variable damping 
was calculated 
using velocity (�̇�) 
and acceleration 
(�̈�). User intent
recognition was 
based on changes 
in kinetic energy, 
�̇��̈�.

Variable stiffness 
was used to ensure 
subjects moved in 
a straight path 
based on the 
subjects’ intent of
direction.
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• The variable impedance controller was compared with a 
positively damped, zero stiffness controller.

• Statistical analysis demonstrated similar results for stability, an 
increase in agility, and a reduction in overall human effort for 
the variable impedance controller.

• By using information about the 
inherent human ankle impedance, a 
variable impedance controller was 
designed that is less conservative 
than commonly-use positive 
damping controllers.

Representative Subject Results

Group Results


