Variable Impedance Control of the Robotic Ankle Joint

James Arnold, Robotics and Autonomous Systems (Mechanical Engineering)
Mentor: Hyunglae Lee, Assistant Professor
School for Engineering of Matter, Transport and Energy

Research Question
Will assistance from a wearable ankle robot using a variable impedance controller allow human users to move in an agile and stable way that requires less effort than commonly-used controllers?

Methods
In this study, 10 human subjects wore an ankle robot that provided assistance through a variable impedance controller.

Variable damping was calculated using velocity (\(\dot{\theta}\)) and acceleration (\(\ddot{\theta}\)). User intent recognition was based on changes in kinetic energy, \(\dot{\theta}^2\).

Variable stiffness was used to ensure subjects moved in a straight path based on the subjects’ intent of direction.

Results
- The variable impedance controller was compared with a positively damped, zero stiffness controller.
- Statistical analysis demonstrated similar results for stability, an increase in agility, and a reduction in overall human effort for the variable impedance controller.

Representative Subject Results

Conclusions
- The variable impedance controller was shown to:
 - Maintain Stability
 - Improve Agility
 - Reduce Effort

Future Work
- Use machine learning (Bayesian Optimization) to tune the parameters in the variable impedance controller.
- Test the controller in different environments (e.g., a walking study) and for different joints (e.g., the shoulder).

Acknowledgements
Thank you to Dr. Hyunglae Lee for your mentorship. This project was funded by the MORE.