Adsorption of Selenium Oxo-anions on [012] Alumina Surface and Its Dependence on Configuration and Protonation

Anh Nguyen, Chemical Engineering
Mentor: Dr. Christopher Muhich, Professor and Ms. Srishti Gupta, Graduate Student
School for the Engineering of Matter, Transport, and Energy

Research Motivation and Background

Selenium, in form of oxo-anions – Selenate and Selenite, has been identified as a toxic substance present in drinking water. Researchers have found that metal oxides nanoparticles such as Hematite and Alumina are the adsorbent materials that can reduce selenium content by adsorbing Selenate and Selenite. The adsorbance capacity depends on many factors including configurations of oxo-anions, the degrees of protonation, and the effect of different adsorbent materials. The goal of this research is using first principle calculations to understand these factors, which are important in designing selective models that can improve water resources efficiently using less energy and low cost.

Methods

Perform Density Functional Theory using VASP

\[E_{\text{adsorption}} = E_{\text{Al}_2\text{O}_3(12-y)\text{H}_2\text{O}} - E_{\text{H}_2\text{O}} + y E_{\text{H}_2\text{O}} - E_{\text{Al}_2\text{O}_3\text{H}_2\text{SeO}_x} \]

Findings and Progress

- Adsorption of Selenite and Selenate with different configurations on [012] Alumina surface
- Adsorption of Selenate on [012] Alumina surface with different degree of protonation
- Fully protonated systems have higher adsorption energies than semi-protonated and deprotonated systems

Conclusions

- Alumina [012] surface adsorption is more selective towards selenate as compared to selenite
- Fully protonated systems have higher adsorption energies than semi-protonated and deprotonated systems
- Inner sphere adsorption is more exothermic than outer sphere adsorption

Acknowledgements

- Dr. Christopher Muhich
- Srishti Gupta
- Muhich Research Team