A Mixed Reality Haptic Interface for the Simulation of Fluid Sensations
Albert Hu, Mechanical Engineering
Robert LiKamWa
Arizona State University

Research Question
How can interactive learning experiences be replicated to offer the same depth and immersion virtually as opposed to regular in-person learning?

The Issue With Current Fluid Haptics Systems
Interactive learning in a laboratory environment is immensely important for knowledge acquisition [1], yet many current experimental fluid haptics systems are too high cost or too technically and computationally extensive.

Challenges for Replicating Fluid Sensations
- Accurately replicating real-time tactile fluid sensations is challenging due to the difficulty of synthetically reproducing detectable feelings of fluid motion and density.
 - HydroRing [2] requires an extensive conglomeration of wearable components in order to properly convey tactile sensation.
 - Magnetorheological fluids are functionally limited given their temperature dependence [3], and their inability to provide localized haptic feedback [4].

Our Solution: Dual Fan-Thermoelectric Interface
We propose a mixed reality haptic interface:
Composition
- Arduino fan and Peltier cooler circuit
- Interactive virtual environment
Capabilities
- Basic fluid motion recreation
- Allows for visual observation of fluid motion

System Block Diagram

Applications and Future Exploration
Applications
- Virtual chemistry/science experiments
- Enhanced VR video game immersion
Exploration
- Air Flow: What kinds of wind patterns better simulate rushing water?
- Fan Design: Do different fan blades produce better fluid sensations?
- User Studies: How do different individuals register fluid haptic sensations?

Unity Scene: Fluid Emitter Off State

Unity Scene: Fluid Emitter On State

References