Target Detection Using Algorithmic Matter
Rebecca Martin, Computer Systems Engineering
Mentor: Dr. Andréa Richa, Professor
School of Computing, Informatics, and Decision Systems Engineering

Motivation
• Invasive surgery has higher risks
• Distributed algorithms allow a system of simple machines to have complex behaviour
• Nanosized particles with constant memory can run distributed algorithms without centralized control

Research question
Is there an efficient distributed algorithm that can make the system of particles detect and converge to a target in the environment?

Method
• A policy is a sequence of decisions that tell the particle which path to take in the graph
• Randomly explore environment until target is encountered; then, update and follow policy as shown in the figure[1] below, where each possible branch is assigned a number
• Use stored policy to deterministically choose path after target is seen

Results
• Combination of random exploration and individual policies will cause all particles to converge to target
• Next, improve runtime; this method is exponential on the number of paths

Conclusion & Future Work
I would like to thank Dr. Andréa Richa, Joshua Daymude, Jamison Weber, and Anya Chaturvedi of the Self-Organizing Particle Systems Lab (sops.engineering.asu.edu) for guiding me throughout the semester. I would also like to thank the FURI program for funding this work.

Fig 1: The environment has been modeled as a graph, with the target edge marked in red.

Fig 2: The communication policy allows particles who have not found the target to copy the policies of those who have.

References