

Motivation

- Invasive surgery has higher risks
- Distributed algorithms allow a system of simple machines to have complex behaviour
- Nanosized particles with constant memory can run distributed algorithms without centralized control

Research question

Is there an efficient distributed algorithm that can make the system of particles detect and converge to a target in the environment?

Method

- A policy is a sequence of decisions that tell the particle which path to take in the graph
- Randomly explore environment until target is encountered; then, update and follow policy as shown in the figure^[1] below, where each possible branch is assigned a number
- Use stored policy to deterministically choose path after target is seen

Fig 2: The communication policy allows particles who have not found the target to copy the policies of those who have.

Target Detection Using Algorithmic Matter

Rebecca Martin, Computer Systems Engineering Mentor: Dr. Andréa Richa, Professor School of Computing, Informatics, and Decision Systems Engineering

Fig 1: The environment has been modeled as a graph, with the target edge marked in red.

Conclusion & Future Work

- Combination of random exploration and individual policies will cause all particles to converge to target
- Next, improve runtime; this method is exponential on the number of paths

Acknowledgements

would like to thank Dr. Andréa Richa, Joshua Daymude, Jamison Weber, and Anya Chaturvedi of the Self-Organizing Particle Systems Lab (sops.engineering.asu.edu) for guiding me throughout the semester. I would also like to thank the FURI program for funding this work.

References

[1] Berrueta, Thomas A., Ana Pervan, and Todd D. Murphey. "Towards Robust Motion Planning for Synthetic Cells in a Circulatory System."

